МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Комитет общего и профессионального образования Ленинградской области

Комитет образования администрации Муниципального образования Тосненский район Ленинградской области

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №4 г. Тосно»

Принято На заседании педагогического совета МБОУ «СОШ №4 г. Тосно» протокол №1 от 30.08.2024 г

Утверждено приказом директора МБОУ «СОШ №4 г. Тосно» №403 от 02.09.2024 г

Дополнительная общеобразовательная общеразвивающая программа «Оптика лазеров» для учащихся 10-11-х классов

Направленность: техническая

Уровень программы: ознакомительный

Возраст учащихся: 10-18 лет Срок реализации: 2 года

Рабочую программу составила: учитель физики высшей квалификационной категории, педагог дополнительного образования Ковальчук Наталья Николаевна

СОДЕРЖАНИЕ

	Стр.
Пояснительная записка	3
Материально-техническое обеспечение программы	5
Планируемые результаты освоения курса	5
Календарно-тематическое планирование курса	6

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Оптика лазеров» составлена в рамках исполнения поручения Президента Российской Федерации от 7 сентября 2021 г. № Пр-1659 «О необходимости создания «инженерных классов» по профилю «судостроение» и проекта ФГБОУ ДПО «Институт развития профессионального образования» создания и функционирования инженерных классов в Ленинградской области (далее - Проект), а также на основе ниже перечисленных нормативных документов:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» с изменениями и дополнениями;
- Федеральный закон от 24.03.2021 №51- ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации»;
- Федеральный закон от 30.12.2020 №517-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» и отдельные законодательные акты Российской Федерации»;
- Федеральный закон от 26.05.2021 №144-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации»;
- Приказ Министерства просвещения Российской Федерации от 27.07.2022 г. № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Концепция развития дополнительного образования детей до 2030 года (распоряжение Правительства Российской Федерации от 31.03.2022 № 678-р);
- Письмо Министерства образования и науки Российской Федерации от 18.11.2015 г. № 09-3242 «О направлении методических рекомендаций по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Письмо Минпросвещения России от 31.01.2022 № ДГ-245/06 «О направлении методических рекомендаций по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий»;
- Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4. 3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
 Областной закон Ленинградской области от 24.02.2014 № 6-оз «Об
- Областной закон Ленинградской области от 24.02.2014 № 6-оз «Об образовании в Ленинградской области»;
- Устав муниципального бюджетного общеобразовательного учреждения «Средняя общеобразовательная школа №4 г. Тосно».

Целью проекта является организация эффективной предпрофессиональной подготовки обучающихся за счет интеграции лучших практик общего и дополнительного образования, внеурочной и внеучебной деятельности, погружения в передовые программы индустрии, что обеспечивает высокое

качество учебного процесса и формирование высокой мотивации обучающихся, позволяющей им в дальнейшем реализовать себя в инженерной деятельности в компаниях индустриальных партнеров. Проект осуществляется через реализацию кластерно-ориентированного образования, обеспечивающего сетевое взаимодействие общеобразовательной организации с организациями высшего образования (СПбГМТУ), а также предприятиями - индустриальными партнерами.

Актуальность образовательной программы: лазерные технологии являются одним из наиболее перспективных и динамично развивающихся направлений научно-технического прогресса. По темпам роста мировой рынок лазерной техники технологии уступает только информационным технологиям. Лазерные технологии – это современная робототехника и автоматика, оптика и физика, информационные технологии, конструирование и это перспективная и востребованная профессия, возможность самореализации в различных областях: организационно-управленческая, инженерная, научная. Лазерные технологии – это интересная и увлекательная работа в области высоких технологий, на предприятиях и в исследовательских центрах, занимающихся разработкой новых технологий, оборудования и материалов для авиа-, судо- и автомобилестроения, ракетно-космической нефтегазодобывающей металлургии, химической И промышленности не только в России, но и за рубежом. Такое применение и свидетельствует об актуальности различных областей направления, однако ввиду его высоких квалификационных требований к работникам возникает необходимость в профессионально-ориентационной работе и в комплексной подготовке кадров еще на ранних этапах образования.

Настоящая программа ориентирована на преодоление наметившегося разрыва между общими и высшими учебными заведениями, а также между сферой образования и сферой высокотехнологичного производства, поэтому наполнение общего образования по физике дополняется теоретическим и практическим материалом, продиктованным требованиями современного производства, что И составляет педагогическую настоящей программы. целесообразность и новизну Ее отличительная особенность профессионально-ориентационным обусловлена материала, уклоном в практическое применение полученных знаний и компетенций на базе высокотехнологичного оборудования, применяемого в современном производстве, а также ранней проектной деятельностью, которая послужит дальнейшим образовательным и профессиональным капиталом для будущего специалиста.

Форма реализации программы: сетевая. В структуру сети входят: СПбГМТУ, школы, индустриальные партнеры.

Цель: дать общее представление о сути лазерных технологий, перспективах, месте лазерных технологий в науке и производстве, задачах лазерных технологий и способах их решения.

Задачи:

- познакомить обучающихся с историей возникновения лазерной техники, лазерных технологий, а также с их сферами применения и научными областями, где они непосредственно задействованы;
- дать представление об устройстве лазера и физических явлениях, лежащих в основе его работы;
- познакомить обучающихся со строением и свойствами материалов, а также с принципами их взаимодействия с лазером;
- дать представление о составе и принципе работы лазерной технологической установки, а также о видах и способах лазерной обработки;
- познакомить обучающихся с основными понятиями аддитивных технологий и принципами управления технологическим процессом;
 - обучить основам подготовки 2D и 3D цифровых моделей изделий;
- дать представление о технике безопасности при работе на лазерных установках и устройствах 3D-печати;
- обеспечить сопровождение практических занятий и самостоятельной проектной деятельности.

Условия реализации образовательной программы. Данная программа предназначена для старшего школьного возраста 15-17 лет и рассчитана на 2 года обучения.

Условия набора: принимаются все желающие (15-17 лет) на основе заявления родителей.

Наполняемость группы:10-15 человек.

Режим занятий: 2 часа в неделю.

Кадровое обеспечение: педагог имеет необходимый уровень образования согласно требованиям законодательства.

Форма обучения: групповая.

Форма организации деятельности учащихся на занятии:

- фронтальная;
- групповая;
- коллективная.

Занятия могут проводиться:

- со всем составом учащихся;
- в малых группах;
- индивидуально.

Формы проведения занятий. Для проведения занятий чаще всего используется комбинированная форма, состоящая из теоретической и практической частей.

- 1. Учебное занятие.
- 2. Обобщающее занятие.
- 3. Экскурсия (виртуальная экскурсия).
- 4. Лекция.
- 5. Практическая работа.
- 6. Самостоятельная работа.

Материально-техническое обеспечение программы:

- лазерно-технологический стенд №1 «Лазерная металлообработка»;
- лазерно-технологический стенд №2 «Лазерная обработка неметаллических конструкционных материалов»;
 - технологический стенд «3D PRINTING»;
 - исследовательский робототехнический стенд;
 - вытяжная система;
 - ноутбук для учащегося;
 - компьютер для преподавателя;
 - управляющие ПК;
 - цветное многофункциональное устройство (МФУ);
 - интерактивная доска;
 - письменные столы;
 - лабораторные столы;
 - шкафы для хранения материалов;
 - образцы (алюминий, сталь, латунь, фанера, акрил).

Особенности организации образовательного процесса: независимо от формы обучения занятия носят комплексный характер. Включают в себя: интегрированные занятия, практикумы, работу в группах, экскурсии, проектную деятельность.

Планируемые результаты

Личностные:

- применять навыки общения в команде;
- проявлять интерес к высокотехнологичному оборудованию.

Метапредметные:

- умение пользоваться высокотехнологичным оборудованием;
- способность к самостоятельной проектной деятельности;
- знание техники безопасности при работе с оборудованием.

Предметные:

- понимание принципов работы лазера;
- знать основы подготовки знать 2D и 3D цифровых моделей;
- знать основные понятия аддитивных технологий и принципами управления технологическим процессом.

Формы фиксации результатов: проект.

Формы подведения итогов реализации образовательной программы:

участие в научно-исследовательских выставках и конкурсах разных масштабов.

Календарно-тематическое планирование

1 ГОД ОБУЧЕНИЯ

№	Наименование темы	Вид	Содержание занятия	Кол-во	
п/п		занятия		ак. часов	
		Раздел 1. 1	Введение		
1.	Мазер и лазер	Лекция	Что такое мазер и лазер.	2	
2.	История открытия		Устройства лазера. История	2	
3.	Применение лазерных		возникновения лазерной	2	
	технологий		техники и лазерных технологий.		
4.	Знакомство с лазерными	Экскурсия	Области науки, связанные с	2	
	технологиями		лазерными технологиями.		
	(СПбГМТУ)				
	Раздел 2.	Создание и раз	витие лазерной техники		
5.	Явления, лежащие в	Лекция	Свет и его свойства. Физические	e 2	
	основе работы лазера		явления, лежащие в основе		
6.	Устройство лазера	Лекция	действия лазера. Основные	2	
7.	Виды лазеров	Лекция	составные части лазера и их	2	
8.	Определение класса	Практика	назначение. Классификация	2	
	опасности лазерных		лазеров. Работа твердотельных		
	комплексов		и газовых лазеров в составе		
9.	Работа лазеров в составе	Экскурсия	технологических установок	2	
	технологических		гравировки и резки		
	установок гравировки и				
	резки				
10.	Области применения	Практика		2	
	лазерных комплексов				
	Раздел 3. Взаим	одействие лазе	рного излучения с веществом		
11.	Кристаллы	Лекция	Строение и свойства	4	
12.	Металлы и сплавы	Лекция	материалов. Структура и	2	
13.	Полимеры	Лекция	свойства кристаллов.	2	
14.	Строение и свойства	Практика	Разновидности кристаллов.	2	
	материалов		Металлы и сплавы. Жидкие		
15.	Отражение и	Практика	кристаллы. Структура	2	
	преломление света		полимеров, стекла и керамики.		
16.	Условия полного	Практика	Поглощение, отражение,	2	
	отражения света		преломление света. Передача		
	(Оптоволокно)		энергии. Нагрев твердых тел и		
	·		жидкостей. Механизмы		
			плавления и разрушения		
			материалов под действием		
			лазерного излучения		
			хнологии обработки	T	
17.	Виды и способы			4	
	лазерной обработки.		работе на лазерных установках.		
18.	Состав и принцип	Лекция	Виды и способы лазерной	4	

	T	Ī	T = =	
	работы лазерной		обработки. Сварка, резка,	
	технологической		наплавка, гравировка и	
	установки		маркировка. Состав и принцип	
19.	Устройство лазерных	Экскурсия	работы лазерной	2
	технологических		технологической установки.	
	установок FMark		Специфика применения	
	Education и установок		технологий для разных видов	
	лазерной резки и		материалов. Устройство	
	маркировки портального		лазерных технологических	
	типа		установок FMark Education и	
20.	Программное	Практика	установок лазерной резки и	4
	обеспечение A-Skript		маркировки портального типа.	
21.	Работа лазерной	Экскурсия	Работа установок.	2
	установки FMark	71		
	Education			
22.	Специфика обработки	Практика		4
	разных видов			
	материалов лазерной			
	установкой FMark			
	Education			
	Раздел 5	Лазерные техно	ологические комплексы	
23.	Аддитивные технологии	Лекция	Техника безопасности при	2
24.	Лазерные технологии в	Лекция	работе на лазерных установках.	2
	аддитивном		Основные понятия аддитивной	
	производстве		технологии, принципы	
25.	Лазерные технологии в	Экскурсия	формирования изделий.	4
	аддитивном	71	Лазерные технологии в	
	производстве.		аддитивном производстве.	
	(СПбГМТУ)		Принципы управления	
26.	Автоматизированные	Практика	технологическим процессом.	4
	комплексы		Автоматизированные	
27.	Роботы в лазерной	Лекция	комплексы. Роботы в лазерной	2
	обработке	1	обработке.	

УЧЕБНЫЙ ПЛАН

2 ГОД ОБУЧЕНИЯ

№	Наименование темы	Вид	Содержание занятия	Кол-во
п/п		занятия		ак. часов
Раздел 6. Основы подготовки 2D и 3D цифровых моделей изделий				
1.	Графический редактор в	Лекция	Техника безопасности при	4
2.	процессе подготовки 2D	Экскурсия	работе на лазерных установках	4
	цифровых моделей изделий для лазерной установки		и устройствах 3D-печати. Безопастные приемы работы.	
3.	FMark Education и установок планшетного типа.	Практика	Графический редактор в процессе подготовки 2D	4
4.	Программное обеспечение и интерфейс установки FMark Education.	Лекция	цифровых моделей изделий для лазерной установки FMark Education и установок	4
5.	Основы подготовки 2D и 3D цифровых моделей изделий	Лекция	планшетного типа. Основы формирования цифровых	4
6.	Подготовка цифровой модели изделия и её реализация на установке FMark Education	Лекция	моделей для 3D-принтеров. Технологические возможности управляющего ПО и интерфейса установки FMark	4
7.	Цифровая модель изделия и её реализация на установках планшетного типа	Практика	Education. Процесс подготовки цифровой модели изделия и её реализация на установке	4
8.	Технологические возможности управляющего ПО и интерфейса 3Dпринтера.	Лекция	FMark Education. Управляющее ПО и интерфейс установок планшетного типа. Цифровая модель изделия и её	4
9.	Формирование цифровых моделей для 3-D принтеров	Практика	реализация на установках планшетного типа.	4
10.	Цифровая 3D-модель изделия	Практика	Технологические возможности управляющего ПО и	4
11.	Процесс печати изделия на принтере.		интерфейса 3D-принтера. Цифровая 3D-модель изделия.	4
12.	Процесс печати изделия на принтере.	Практика	Процесс печати изделия на принтере. Способы построения программы для простейшего робота Практическое закрепление знаний, полученных на предыдущих лекциях	2
			учебных технологических устано	эвках
13.	Проектный облик изделия и формирование цифровой модели изделия	Лекция	Формирование цифровой модели и проектного облика изделия на 3-D принтере	4
14.	Реализация цифровых проектов на учебных технологических установках изделия	Практика		14
15.	Аттестация			2

Календарный учебный график реализации программы «Оптика лазеров»

Год обучения	Дата начала обучения по программе	Дата окончания обучения по программе	Всего учебных недель	Количество учебных часов	Режим занятий
1 год	01.09.2023	25.05.2024	34	68	2 часа в
					неделю
2 год	01.09.2024	18.05.2025	33	66	2 час в
					неделю